Problems to be done but not turned in: 15.1, 15.3, 15.5, 15.7; 17.1, 17.3, 17.5, 17.7, 17.9, 17.11, 17.13, 17.15.

Problems to be turned in: All numbers refer to exercises in Ross.

1. Ex. 15.4(a,c).

2. Ex. 15.6.

3. Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = \sqrt[3]{x} \). Use the definition of continuity to prove that \(f \) is continuous at 0.

4. For a nonempty \(A \subseteq \mathbb{R} \) and \(K > 0 \), we say that a function \(g : A \to \mathbb{R} \) is \(K \)-Lipschitz if for any \(x, y \in A \), we have
 \[
 |g(x) - g(y)| \leq K |x - y|.

 Let \(A \subseteq \mathbb{R} \) be nonempty and \(K > 0 \), and suppose that \(g : A \to \mathbb{R} \) is \(K \)-Lipschitz. Prove that \(g \) is continuous on \(A \) (i.e., at every \(a \in A \)).

5. Ex. 17.10(b,c).

6. Let \(h : \mathbb{R} \to \mathbb{R} \) be defined by
 \[
 h(x) = \begin{cases}
 \sqrt[3]{x} \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0, \\
 0 & \text{if } x = 0.
 \end{cases}

 Prove or disprove: \(h \) is continuous at 0.

7. Ex. 17.12.