Sample final, Spring 2002

1. Let \(\mathbf{u}_1, \ldots, \mathbf{u}_k \) be vectors in a subspace \(V \) of \(\mathbb{R}^n \).
 (a) (10 points) Define what it means for \(\mathbf{u}_1, \ldots, \mathbf{u}_k \) to be linearly independent.
 (b) (10 points) Define what it means for \(\mathbf{u}_1, \ldots, \mathbf{u}_k \) to be a basis for \(V \), and define the dimension of \(V \).

2. (14 points) Let \(A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ -3 & -4 & -2 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 2 \\ 0 & -5 \end{bmatrix} \).
 (a) Exactly one of the products \(AB, BA \) is defined. Calculate that product.
 (b) Calculate \(A^{-1} \), if it exists, or explain how you know that it does not exist.

3. (14 points) Find the solution set to
 \[
 \begin{align*}
 2x_2 + 2x_4 &= 4, \\
 -x_1 - 2x_2 + x_3 &= 2, \\
 2x_1 + x_2 - 2x_3 &= -1.
 \end{align*}
 \]
 If the system is consistent, put your final answer in vector form; if the system is not consistent, explain how you know that the system is not consistent.

4. (20 points) Let \(A = \begin{bmatrix} 1 & 2 & -4 & 1 & 0 \\ 0 & 1 & -3 & 1 & 1 \\ 3 & 2 & 0 & 0 & -3 \\ -1 & 1 & -5 & 1 & 2 \end{bmatrix} \), \(\text{ref}(A) = \begin{bmatrix} 1 & 0 & 2 & 0 & -1 \\ 0 & 1 & -3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \).
 (a) Find a basis for the column space of \(A \).
 (b) Find the dimension of the nullspace of \(A \).
 (c) Find one specific nonzero vector \(\mathbf{x} \) such that \(A\mathbf{x} = \mathbf{0} \).
 Show all your work, and in each part this question, briefly EXPLAIN (in a phrase or sentence) how your answer was obtained.

5. (14 points) Let \(W = \text{Span} \left\{ \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \end{bmatrix} \right\} \). Find an orthogonal basis for \(W \).
 Show all your work.

6. (20 points) Let \(A = \begin{bmatrix} -1 & -3 & -6 \\ -6 & -4 & -12 \\ 3 & 3 & 8 \end{bmatrix} \). A computation shows that the characteristic polynomial of \(A \) is \(-(t + 1)(t - 2)^2 \). (This is given; do not spend time checking it.)
 Determine if \(A \) is diagonalizable. If \(A \) is diagonalizable, find a diagonal matrix \(D \) and an invertible matrix \(P \) such that \(A = PDP^{-1} \); if \(A \) is not diagonalizable, explain how you know that \(A \) is not diagonalizable.
7. (T/F) (8 points) Let A be a 4×4 matrix such that 3 is an eigenvalue of A. It is possible that the nullspace of $(A - 3I_4)$ is the zero subspace.

8. (T/F) (8 points) Let V be a 2-dimensional subspace of \mathbb{R}^4, and let x, y, z be nonzero vectors in V. Then $\{x, y, z\}$ must be linearly independent.

9. (T/F) (8 points) There exist 3×3 matrices A and B such that $\det A = 2$, $\det B = -4$, and AB is not invertible.

10. (T/F) (8 points) Let W be a nonzero subspace of \mathbb{R}^5. If v is a vector in \mathbb{R}^5, and $v = x + y$, where $x \in W$ and $y \in W^\perp$, then x is the vector of W that is closest to v.

11. (T/F) (8 points) If v_1, v_2, and v_3 are vectors in \mathbb{R}^4, and W is the set of all linear combinations of v_1, v_2, v_3, then W must be a subspace of \mathbb{R}^4.

12. (T/F) (8 points) Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation, let b be a vector in \mathbb{R}^2, and let W be the set of all $x \in \mathbb{R}^3$ such that $T(x) = b$, i.e., $W = \{x \in \mathbb{R}^3 \mid T(x) = b\}$. Then W must be a subspace of \mathbb{R}^3.

13. (T/F) (8 points) Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, and let B be an invertible 2×2 matrix. Then it must be true that $AB = BA$.

14. (T/F) (8 points) Let $T : \mathbb{R}^2 \to \mathbb{R}^4$ be a linear transformation such that $T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ and $T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -3 \\ 5 \\ 0 \end{bmatrix}$. It is possible that $T(x) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ for some $x \in \mathbb{R}^2$.

15. Let A be a 5×7 matrix, and let b be a vector in \mathbb{R}^5.

(a) (8 points) Is it possible that rank $A = 6$? Give an example of such an A, or explain why no such A can exist.

(b) (8 points) Is it possible that the equation $Ax = b$ has exactly one (i.e., at least one, and not more than one) solution $x \in \mathbb{R}^7$? Give an example of such an A, or explain why no such A can exist.

16. Suppose that $\{u_1, u_2, u_3\}$ spans a subspace V of \mathbb{R}^4.

(a) (9 points) Let y be a vector in V. Must it be true that $\{u_1, u_2, u_3, y\}$ spans V? Either:
 - Explain why $\{u_1, u_2, u_3, y\}$ must span V; or
 - Give a specific example of $\{u_1, u_2, u_3, y\}$ satisfying the above conditions, and explain how you know that $\{u_1, u_2, u_3, y\}$ does not span V in your example.

(b) (9 points) Must it be true that $\{u_1, u_2\}$ spans V? Either:
 - Explain why $\{u_1, u_2\}$ must span V; or
 - Give a specific example of $\{u_1, u_2, u_3\}$ satisfying the above conditions, and explain how you know that $\{u_1, u_2\}$ does not span V in your example.