Review of span and linear independence
Linear algebra (Math 129A)

Let \(\{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) be vectors in \(\mathbb{R}^n \). The fundamental definitions are:

Definition. The span of \(\{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) is the set of all linear combinations of \(\{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \). In other words, the span of \(\{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) is

\[
\text{Span} \{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} = \{ a_1 \mathbf{u}_1 + \cdots + a_k \mathbf{u}_k \mid a_i \in \mathbb{R} \}.
\]

Definition. If, for some \(c_1, \ldots, c_k \in \mathbb{R} \) with not all \(c_i \neq 0 \), we have

\[
c_1 \mathbf{u}_1 + \cdots + c_k \mathbf{u}_k = \mathbf{0},
\]

then we say that \(\{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) is **linearly dependent**. If the only solution to (*) is \(c_1 = \cdots = c_k = 0 \), then we say that \(\{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) is **linearly independent**.

Which sets of vectors span \(\mathbb{R}^n \)? Let \(\{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) be vectors in \(\mathbb{R}^n \), and let \(A \) be the \(n \times k \) matrix \([\mathbf{u}_1 \cdots \mathbf{u}_k] \), i.e., the matrix whose columns are \(\mathbf{u}_1, \ldots, \mathbf{u}_k \). Among other things, the following theorems (Thms. 1.5 and 1.7, respectively) give tests for determining if \(\{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) spans \(\mathbb{R}^n \) and determining if \(\{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) is linearly independent. (Actually, these tests are really just a single test: finding the rank of \(A \).

Theorem (Fat Matrix Theorem). For an \(n \times k \) matrix \(A \), the following are equivalent:

1. The columns of \(A \) span \(\mathbb{R}^n \).
2. For every \(\mathbf{b} \in \mathbb{R}^n \), the equation \(A\mathbf{x} = \mathbf{b} \) has either one solution or infinitely many solutions.
3. \(\text{rank}(A) = n \).
4. \(\text{RREF}(A) \) has no zero rows.

We call this the Fat Matrix Theorem because for the conditions to be true, we must have \(k \geq n \) (i.e., the matrix \(A \) must be “fat”).

Theorem (Tall Matrix Theorem). For an \(n \times k \) matrix \(A \), the following are equivalent:

1. The columns of \(A \) are linearly independent.
2. The only solution to \(A\mathbf{x} = \mathbf{0} \) is \(\mathbf{x} = \mathbf{0} \).
3. For every \(\mathbf{b} \in \mathbb{R}^n \), the equation \(A\mathbf{x} = \mathbf{b} \) has either no solutions or one solution.
4. \(\text{rank}(A) = k \).
5. Every column of \(\text{RREF}(A) \) is a pivot column.

We call this the Tall Matrix Theorem because for the conditions to be true, we must have \(n \geq k \) (i.e., the matrix \(A \) must be “tall”).

Enlarging or shrinking spanning sets. Here, we start to see how the ideas of span and linear independence complement each other.

Let \(\{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) be vectors in \(\mathbb{R}^n \). In Thm. 1.8, we see that:

Theorem. The vectors \(\mathbf{u}_1, \ldots, \mathbf{u}_k \) are linearly dependent precisely if one of the following conditions is true:

1. Either \(\mathbf{u}_1 = \mathbf{0} \), or
2. Some \(\mathbf{u}_i \) (\(2 \leq i \leq k \)) is a linear combination of the previous vectors.

Combining this with part (c) of Thm. 1.6, we see that:
Theorem. Let S be a finite set of vectors in \mathbb{R}^n, and let $V = \text{Span } S$. Then V can be spanned by a smaller subset of S if and only if S is linearly dependent.

Proof. If S is linearly dependent, then either some vector in S is equal to 0 or at least one vector $z \in S$ is a linear combination of the others. By Thm. 1.6(c), we can remove z from S and obtain a smaller set of vectors with the same span.

Conversely, suppose we can remove a vector z from S and obtain a smaller set of vectors with the same span. In that case, by Thm. 1.6, z is a linear combination of the other vectors in S, so by Thm. 1.8, S is linearly dependent. □

The Span-Independence Theorem. Another key relationship between spanning and linear independence is Thm. 1.9, whose importance will become clearer later.

Theorem (Span-Independence Theorem). Let $\{u_1, \ldots, u_k\}$ be vectors in \mathbb{R}^n, and let $V = \text{Span } \{u_1, \ldots, u_k\}$. Every subset of V containing more than k vectors is linearly dependent.

In other words, put in terms of linear independence:

Theorem. Let V be a subset of \mathbb{R}^n. Any set $\{v_1, \ldots, v_m\}$ that spans V is at least as large as any linearly independent subset $\{w_1, \ldots, w_k\}$ of V.

The point is, we do not assume that the v's have any direct relation to the w's (e.g., v_1 need not be w_1, etc.), but we still know that there have to be more v's than w's.