Problems to be done, but not turned in: (3.1) 7, 11; (3.2) 6, 9, 13; (3.3) 5, 7, 9, 10, 13, 17.

Problems to be turned in:

1. Let V be a vector space, let W_1 and W_2 be subspaces of V, and let

$$U = \{ v \in V \mid v = w_1 + w_2 \text{ for some } w_1 \in W_1, w_2 \in W_2 \}.$$

Prove that U is a subspace of V.

2. (3.2) 11(b).

3. (3.2) 14.

4. Let V be a vector space, and let v, w, x be vectors in V such that $v + w + x = 0$. Let $W_1 = \text{span}\{v, w\}$, and let $W_2 = \text{span}\{w, x\}$. Must it be true that $W_1 = W_2$? Prove or give a counterexample.

5. (3.3) 15.

6. Let V be a vector space, and let v_1, v_2, v_3 be nonzero vectors in V.

 (a) Give an example of a vector space V and $v_1, v_2, v_3 \in V$ such that $v_3 \in \text{span}\{v_1 - v_2, v_2 - v_3\}$.

 (b) Now suppose that $\{v_1, v_2, v_3\}$ is linearly independent. Is it possible that $v_3 \in \text{span}\{v_1 - v_2, v_2 - v_3\}$? Give an example or prove that it is not possible.