Problem Set 1
Math 238

1. Show that
\[\cos \theta + \cos(\theta + x) + \cdots + \cos(\theta + nx) = \frac{\sin(n+1)x}{\sin \frac{x}{2}} \cdot \cos(\theta + \frac{1}{2}nx) \]

2. Prove that for \(m = 2, 3, \ldots \)
\[\sin \left(\frac{\pi}{m} \right) \sin \left(\frac{2\pi}{m} \right) \sin \left(\frac{3\pi}{m} \right) \cdots \sin \left[\frac{(m-1)\pi}{m} \right] = \frac{m}{2^{m-1}} \]

3. Describe geometrically the region in the complex plane determined by
\[|z + i| < |z - i|, \text{ where } z = x + iy. \]

4. Prove the Minkowski inequality
\[\sqrt{\sum_{j=1}^{n} |a_j + b_j|^2} \leq \sqrt{\sum_{j=1}^{n} |a_j|^2} + \sqrt{\sum_{j=1}^{n} |b_j|^2} \]
where \(a_j, b_j \in \mathbb{C}. \)
[Hint: Use Cauchy's inequality.]

5. Suppose \(\text{Im} z > 0. \) Show that
\[\left| \frac{z - \alpha}{z - \overline{\alpha}} \right| = k > 0, \ \text{where } z = x + iy, \ \alpha = a + ib, \]
is an equation of a circle. Find its center and radius.
1. Let function f be defined by $f(z) = u(x,y) + i v(x,y)$ and suppose that f is analytic in a domain D. Show that

$$\left(\frac{\partial}{\partial x}|f(z)|^2 + \frac{\partial}{\partial y}|f(z)|^2\right)^2 = |f'(z)|^2 \quad (\forall z \in D).$$

2. Let $u = u(x,y)$ and $v = v(x,y)$ be harmonic functions in a domain D. Prove that the function

$$F = (u_y - v_x) + i (u_x + v_y)$$

is analytic in D. Assume $f(z) = u + iv$ is analytic in D.

3. Suppose $f(z)$ is analytic in a domain D. Suppose further that for all $z \in D$, $|f(z)| < 1$ and $f'(z) \neq 0$. Show that the function w defined by

$$w(z) = \ln \left(\frac{|f'(z)|}{1 - |f(z)|^2} \right)$$

satisfies in D the P.D.E.

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = 4 \cdot e^{2w}.$$

4. Suppose $f(z)$ is analytic in D and $f'(z) \neq 0$ for all z in D. Show that

$$\nabla^2 |f(z)| = \frac{|f'(z)|^2}{|f(z)|^2}.$$
Problem Set 3

1. Show that if \(f(z) \) and \(\overline{f(z)} \) are both analytic in a domain \(D \) then \(f(z) \) is a constant.

2. If \(f(z) \) is analytic and \(|f(z)| \) is constant in \(D \) then \(f(z) \) is also a constant in \(D \).

3. Prove that \(f(z) \) is analytic if and only if \(\overline{f(z)} \) is analytic.

4. Let \(P_r(\theta) = \frac{1-r^2}{1+r^2-2r \cos \theta} \).

 Show that \(P_r(\theta) \) is harmonic in \(|z|<1\).

5. Evaluate the integral

 \[
 \int_0^{2\pi} \frac{R^2-r^2}{R^2+r^2-2r R \cos(\theta-\phi)} \, d\phi, \quad 0 \leq \theta \leq 2\pi.
 \]

 Do this problem in two ways.

6. If \(u-v = (x-y)(x^2+4xy+y^2) \) and \(f(z)=u+iv \) is an analytic function of \(z=x+iy \), find \(f(z) \) in terms of \(z \).

7. Let \(f(z) \) be analytic in a domain \(D \).

 If \(h(xy)=u(xy)v(xy) \), where \(f(z)=u+iv \), is it true that \(\nabla^2 h(xy)=0 \)? Justify your answer.
Problem Set 4

1. Let \(f(z) \) be an entire function such that
\[f(z) = f(z+2) \quad \text{and} \quad f(z) = f(z+i) \]
for all \(z \). Show that \(f(z) \) is a constant.

2. Let \(f(z) \) be an entire function such that
\[|f(z)| \leq e^x, \quad \text{where} \quad z = x + iy. \]
What can be said about \(f(z) \)? More generally, let \(f(z), g(z) \)
be two entire functions satisfying
\[|f(z)| \leq |g(z)| \]
everywhere. What conclusion can you draw about
\(f(z) \)? (Assume \(g(z) \neq 0 \)).

3. Prove or disprove that if \(f(z) \) is an entire function which does not
vanish in the extended complex plane then \(f(z) \) is reduced to a
constant.

4. Let \(f(z) \) be analytic on \(|z| \leq 1 \) and \(|f(z)| < 1 \)
for \(|z| = 1 \). How many solutions does the equation
\(f(z) = z \) have in \(|z| < 1 \)?

5. Let \(f(z) \) be analytic in a domain \(D \) and on its boundary \(C \). If \(|f(z)| \) is constant on \(C \), show that there exists at least one zero of \(f(z) \) in \(D \) unless \(f(z) \) reduces to a constant in \(D \).
6. Prove that if \(P(z) = a_0 + a_1 z + \cdots + a_n z^n \)
with \(0 < a_0 < a_1 < \cdots < a_n \), then \(P(z) \)
has all of its zeros inside the unit circle.

7. Let \(f(z) \) be an analytic function inside and on a simple closed contour \(C \) with zeros \(a_i \), \(i = 1, 2, 3, \ldots, N \). If \(g(z) \) is analytic inside and on \(C \), then show that
\[
\frac{1}{2\pi i} \int_C g(z) \frac{f'(z)}{f(z)} \, dz = \sum_{i=1}^{N} g(a_i).
\]

8. Let \(f(z) \) be analytic in \(|z| < R \) for \(|z| = 1 \) and \(f(0) = 1 \). Prove that \(f(z) \) has at least one zero in \(|z| < 1 \).

9. If \(P(z) \) is a polynomial and \(C : |z-a| = R \), show that
\[
\int_C P(z) \, dz = -2\pi i R^2 P'(a).
\]

10. Let \(f(z) \) be analytic in \(|z| < r \). Let \(L \) denote the length of the image of \(|z| = r \) under the mapping \(w = f(z) \). Show that \(L \geq 2\pi r |f'(0)| \).
Problem Set 5

1. If \(f(z) \) is analytic in \(|z| \leq 1 \) and \(|f(z)| < 1 \) on \(|z|=1 \). Prove that there exists a point \(z_0 \) in \(|z| < 1 \) such that \(f(z_0) = z_0 \). [Hint: Use Rouche's theorem.]

2. Find all functions \(f(z) \) which are analytic in the region \(|z| \leq 1 \) and are such that (i) \(f(0) = 3 \) and (ii) \(|f(z)| \leq 3 \) for all \(z \) such that \(|z| \leq 1 \).

3. Prove that all the roots of \(z^5 + z - 16 = 0 \) lie between the circles \(|z| = 1 \) and \(|z| = 2 \).

4. Suppose that a function \(f(z) \) is analytic in \(|z| \leq 1 \) and satisfying the conditions: \(|f(e^{i\theta})| = 2 \) for all \(\theta, 0 \leq \theta \leq 2\pi \), and \(f(\frac{1}{2}) = 1 + i \). What can be said about \(f(z) \)?

5. Prove that all the roots of \(z^7 - 5z^3 + 12 = 0 \) lie between \(|z| = 1 \) and \(|z| = 2 \).

6. Find the maximum and minimum moduli of \(z^2 - z \) in the disc: \(|z| \leq 1 \).